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1 Abstract

The purpose of this report is to outline the development of a nonlinear solver for membranes under
the plane stress condition. Using the approximations of membranes and plane stress both simplify
the complexity of the algorithm greatly, but still give accurate results for physical geometries the
resemble the membrane approximation. The developed algorithm will be checked for consistency, as
well as accuracy. Consistency will be checked by a three point differentiation scheme and accuracy
will be checked by comparing numerical results to exact analytical ones. Geometries that will be
simulated are flat plates and spherical shells, which both can be treated as membranes.

2 Theory

This section presents the definition of membranes, the basics of neo-hookean materials, how these
material can be formulated mathematically with constitutive laws, and what plane stress means.

2.1 Membranes

For a finite element to be considered a membrane element it must satisfy the following:
e The thickness of the element is very small relative to length or width.

e The element observes the plane stress condition, meaning there is no stresses normal to the
thickness.

e The element does not hold or transmit any moments

While these restrictions may seem unrealistic at first, there are tones of phyiscal geomertries that
are accurately approximated by these conditions. For example a balloon, a the sheeting of a tent,
or a flat plate. The two geometries analyzed in this report are flat plates and spherical shells

2.2 Neo-Hookean Model

The neo-Hookean hyperelastic model is a nonlinear relationship between stresses and strain similar
to that of Hooke’s law. It is often used to predict the nonlinear stres-strain relationship of materials
that are subject to large deformations. While small deformations will behave almost linearly, the
neo-Hookean model predicts a plateauing effect on stress. The equations for a neo-Hookean material
are outlined below. First is the strain energy, which is a fundamental property in stress-strain
analysis that is the foundation for how internal forces and stiffnesses are calculated. The strain
energy can be expressed as

w(E) = 22 W) ~ poln() + 21y 3

where
C=FTF, J=det(F), I, =1tr(C)

Where F is the deformation gradient, g is the shear modulus, and )\ is the bulk modulus. The
strain energy w(F') can be differentiated with respect to the deformation gradient F to arrive a the
following equation for 15! Piola-Kirchoff Stress

Py = (MoIn(J) — o) Fy;' + poFyy
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and 1°¢ Piola-Kirchoff Stress can further be differentiated with respect to F to arrive at the La-
grangian tangent moduli for the material.

Cigkr = MF ;' Frl + podidyr — [MoIn(J) — pol F Fr!
Where § is the Kronecker delta which is defined as

0 if i+
bij = L
1ifi=y

These are the basic equations that describe the material behavior, however most of the time defor-
mation gradient is not constant over a mesh therefore these equations must be put into a different
form. Additionally, in order to solve for displacements we need equations for force and stiffness, not
stress and tangent moduli. Therefore we must do a rigorous variational derivation to get equations
for force and stiffness.

2.3 Deformation Gradient

The first step in developing constitutive laws is defining a reference and deformed configuration.
The reference configuration is your initial sample or mesh, and the deformed configuration is the
current state of the sample or mesh. When there is no deformation the two configurations are the
same. Once these configurations are defined the deformation gradient can be found by calculating
the curvilinear tangent vectors. ‘

F=g oG
Where g; are the deformed tangent vectors, and G* are the reference dual vectors. The tangent
vectors are calculated as follows

81‘(91)
gi =
00;

where r(6;) is the position vector r as a function of the curvilinear components 6, 2, 63, and ¢!
is just a specific curvilinear coordinate. This will be very easy to implement on a discretized mesh
using shape functions. Shape functions will be introduced in the Numerical Methods section.

2.4 Constitutive Laws

After the rigorous derivation as shown in [1], the final equations for strain energy, internal force
and stiffness are given below.

W = wdV
Qo
it = W[ e, Ade! 62
8.’Ez‘a Qo ’
OFnt =B af sv 192
Kokt = = | [26°9 (ag @ @)k + 7055 6] NNy /Ad0"d0
Orkp Q0 -
additionally FZ*" with a constant distributed load f; will be needed
Fet = [ f;N,VAdO' do?
Qo

where a is the in plane curvilinear tangent vectors and /A is the ratio of the reference element
compared to that of the standard isosceles parametric triangle. The term C*?* will be laid out in
the next sub section as well as 7.
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2.4.1 Adjusting neo-Hookean Terms to the Correct Frame

The first step is take the tangent moduli from the neo-Hookean model Cj i, and convert it to the
adjusted lab frame moduli Cr k1.

Crkr = = (F;;'FrpCiskr, — 6irSsL)

1
2
where S = F~1P.Now that we have the moduli explicitly in the lab frame we need to transform it
to the curvilinear frame C* as follows

CM = (G (G?) s Crkn(GF) k(G
And finally to look at the 2D material geometric stiffness

Ca633 C33uu

Sapuy . ~afur
OO = P (3333

We also need the stresses in the 2D curvilinear frame. The first step for this is to convert P into T
T=PF"

and to convert it into the curvilinear frame we must do the same sort of transformation we did for
the tangent moduli.

™ = (g")1(T)15(G) s

And now these terms are ready to be plugged into the constitutive laws outlined above.

3 Incremental Displacement

The final most important step of the process is taking residual forces on the nodes and translating
that into an incremental displacement update, u. The equation for this is given as

Ku=-r

where 1 is the residual force
_ piant ext
r= Fz’a - Ea

Notice that this is linear and looks very similar to the original Hooks Law. To use this linear
approximation the ’guessed’ deformed configuration used to calculate K and r, must be sufficiently
close to the true deformed configuration for the numerical method to converge. This fact is why
you must do incremental loading in nonlinear solvers.

4 Numerical Methods

4.1 Overview

The simulations in the report were developed using MATLAB R2014A Student Version. The general
process of the computational methods used is outlined by the following steps. First, a working
model for individual linear and quadratic triangular elements was developed. This means that the
constitutive laws were applied to a single element and the strain energy, internal force end stiffness
were calculated for each node. The integration was done using the Gaussian quadrature rules.
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Consistency was then checked in all the calculated values using a three point central difference
scheme. Once a single element was consistent, the process of meshing began. I wrote my own
meshing program which breaks surfaces down in to strips and makes triangles out of each strip while
keeping tract of a connectivity list. After a functional mesh, I iterate through each element of the
mesh calculating its nodal forces and stiffnesses and add them to the global force and stiffness arrays.
Consistency was then checked for the global mesh using another three point difference scheme for
each mesh node. Once assemble is consistent, you can solve for the incremental displacement using
residual force and stiffness. Finally when the residual force reaches a specified near zero tolerance,
the deformation has converged.

4.2 Shape Functions

Shape functions are functions that interpolate solutions between known discrete values. A shape
function takes in parametric coordinates (61,62) as inputs and returns and returns the value for
the designed shape function and its derivative. If our parametric domain is the standard isosceles
triangle, where the parametric coordinates are given as (r, s), we have

0<r<i1

0<s<r

Shape functions are an integral part of finate analysis, and a good shape function possess several
important qualities. The first of these qualities is that the shape functions themselves will sum to
one at each point (r,s). This is called a partition of unity:

Z Na(ra 3) =1
a
Simillairly their dericatives must form a partition on nullity,

Z Noo(r,s) =0

Another important quality is C° — completeness which simply means that the shape functions can
interpolate a random polynomial exactly

where p(0) is the exact solution and p, is the polynomial evaluated at node a, and N, is the shape
function associated with that node .

4.3 Quadrature

Another importnat concept in Finite Element Analysis is quadrature. The Gaussian quadrature
rules shown in the following figure give the positisons and wieghts of the points needed to exactly
integrate over an element.
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Triangular
Order Figure Error Points coordinates Weights
inear — O 1 1 1

Linear R=0(h* a ™ 03 3 I
CE a 3 3 0 3
adrati (1,3 | | |
Quadratic b R=0(h") b 5. 0. 3 3
— ; A

Figure 1: From Zienkiewicz and Taylor, Volume 1, Chapter 5: Gaussian quadrature rules for one and three
point rules.

This is an awesome fact that with just a few discrete points you can exactly integrate over a
continuous element. The more points used the equation order that is integrable over is higher.
4.4 Three Point Differentiation

The formula for the general 3-point difference scheme is shown below.

oy L0 D= fla =D

~ fr(a)
where the error is given by,
Error = f}(a) - f'(a) = O(h?)
When this scheme is applied to matrices such as internal force, each node must be perturbed each
direction in order to generate the numerical approximation.

4.5 Newton-Rhapson

The simplest computational method for solving implicit nonlinear equations is using the Newton-
Rhapson method. This method solves for the zeros of a function by repeated linearizion. It is
incredibly accurate given that the implicit function is smooth near zero, and the initial guess is
”close” to the true value. Where :close” depends on the function itself. Newton-Rhapson is used
extensively in my finite element solver so the steps for how it works are important to know.

1. Define a function f(z) such that it equals zero.
2. Compute the derivative of f(z) with respect to x.

3. Use the Newton update equation to iteratively solve for the zeros of the function. By setting a
tolerance for convergence you can get within machine precision of the true value. The Newton
update equation is shown below.
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Where the subscript n just represents what incremental step it is in.

This process is mainly used for enforcing the plane stress condition by changing the out of plane
stretch A and driving the out of plane stress, 753 term, to go to zero. Written out this is

7_33

4.6 Meshing

The meshing process starts by dividing the surface to be meshed into several equal thickness strips.
Then each strip is individually divided into triangles. Its a fairly simple process, however the only
complication comes in when successive rows have a different number of elements. If this happens
you can no longer simply alternate between nodes of adjacent rows to create triangles; you must
compensate for the difference in strip size by periodically using multiple nodes on the larger strip.
Also keeping tract of connectivity is difficult but is of the utmost importance. A connectivity list is
a list whose length is equal to the number of elements in a mesh. Each element of the connectivity
list tells what nodes of the global node list make up a particular element. This is crucial for the
assembly phase. The following figure will show three meshes for a spherical shell with increasing
mesh resolution.
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01 g -0.05

(a) 1z Mesh - 1 element (b) 3x Mesh - 13 elements

RIS

005

QOE . v

(¢) 10z Mesh - 130 elements

Figure 2: This figure shows a Iz, 3x and 10x mesh for a spherical shell. While the © mesh may not look
exactly like a sphere its advantage is that it is very few elements and can be comutated very fast. The 10x
mesh, while it looks pretty is is not worth the extra computational time. A 3x mesh is probably the best
compromise.

Note that most of the mesh is shown in blue wireframe, but a 1/8 portion of the mesh is shown as
white patches with black edges. This is because a sphere is eight way symmetric, therefore if you
know what happens to this 1/8 portion under loads, you now what happens to the whole sphere.
Always take advantage of symmetry when you can in computational problems because it increases
the density of elements you can solve for. Every simulation in this report utilizes some facet of
symmetry to simplify the model.
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4.7 Assembly

Once a successful mesh has been generated, with a valid connectivity list, assembly is simple. You
iterate through the connectivity list, pulling out each element individually as you go, calculating
the forces and stiffnesses. Before you move on to the next element you update the global forces
array and stiffness array using the connectivity which tells oyu exactly how node a of the current
triangle maps to node A of the mesh. Shown mathematically for stiffness,

m _ m €
ki = kiaks + Kiakb

where k™ stands for the global stiffness matrix (m for mesh) and k€ stands for the elemental stiffness
matrix. The relationship between A and a is given by the connectivity list. If the connectivity list
is given a function name T'RI(n) you would determine A form a like follows

TRI(a) = A;

10



MAE 261B DAvID VASKO WINTER 2015

5 Results and Discussions

5.1 Overview

The results section will open by presenting solutions for single element cases before moving on to
meshes, and ultimately applied problems. The nonlinear finite element solver developed in this
paper is consistent accurate, but due to numerous nested for loops and while loops, tends to be
rather slow. That being said it is still a very valuable resource in designing geometries that will
encounter large deformations.

5.2 Single Element

A single element can be linear or quadratic and can deform in three principle directions at any of
its nodes. Below is a figure showing both a linear and a quadratic element with the tangent bases
superimposed.

0.e
06
0.4

0z

(a) Linear Element (b) Quadratic Element

Figure 3: This figure shows the random deformation in three directions of (a) a single linear element and
(b) a single quadratic element. A set of tangent bases is shown for one gauss point

This figure is a good self check to makes sure things are working correctly on the element level. You
can see the stiffness of linear elements, and the flexibility of quadratic ones. By looking specifically
at the basis you can tell that they are tangent to the shape functions at their quadrature point, as
they should be.

5.2.1 Consistency

Running the constitutive laws on a single element both analytically and computationally yeilds the
following relationship between error and perturbation value.

11
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Consistency of Internal Force - Linear Element
10 T T T

10k R

error

10751 i

Sl

10% | | |
10™ 10" 10° 10° 10* 10° 10°
Perterbation [h]

(a)

5 Consistency of Stiffness - Linear Element
10 T T T

10% I I I I I

10" 10° 10° 10" 10° 10°
Perterbation [h]

(b)
Figure 4: This figure shows the consistency of both internal force and stiffness for a linear element. The
green line is O(h?) and the blue line is the error between numerical and analytical forms. I roughly captures
the O(h?) trend. Quadratic elements are also consistent.
5.3 Whole Mesh
5.3.1 Consistency

Running the constitutive laws on the complete mesh analytically and computationally yields the
following relationship between error and perturbation value.

12
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Consistency of Internal Force - Quadratic Element
10° T T T

Sull

error

1072 i
14

107 - B

10" i

10" | | | L , L L
10° 10° 107 10° 10° 10* 10°
Perterbation [h]

(a)

. Consistency of Stiffness - Quadratic Element
10° T T T

10

error

1072

1078 | | | | |
10° 10°
Perterbation [h]

(b)

Figure 5: This figure shows the consistency of both internal force and stiffness for a mesh made up of
quadratic elements. The green line is O(h?) and the blue line is the error between numerical and analytical
forms. I roughly captures the O(h?) trend. Meshes made of linear elements are also consistent.

Note that the relationship is also O(h?) Therefore the implementation for assembly is consistent.
The minimum error occurs between 107> and 107%. With a smaller perturbation value than this
rounding errors become important.

13
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5.4 Flat Plate under Equibiaxial Stretching

When applying uniform stretching ratio to the two principle directions of a flat plate, the result
is a constant deformation gradient. The stresses that arise can be computed from a converged
mesh with prescribed edge displacements or directly using the original neo-Hookean hyperelastic
model. Since both methods are derived from the same model, the results should be consistent.
Additionally, every element in the mesh must have the same deformation gradient in order for the
entire plate to have a constant deformation gradient.

Analytical ws Mumerical Solution for Flat Plate Plane Stress
']|:|_\ ........... e SEREEEEEEEE R R e e .

o MNMumerical F'11

Analytical P,
o MNMumerical F'22

Analytical P,

1 P-k stress
=t

i i i i i i i i
0.2 ] 0.2 0.4 06 0.8 1 1.2

11 = faz

Figure 6: When a flat plate is stretched equally in two directions the deformation gradient is constant
across all elements and the original neo-Hookean model can be used directly. This figure shows that both the
analytical method and the numerical method using a mesh results in the same stresses in both the x and y
directions. Note that the x and y stresses are the same which is what we expect for equibiaxial stretching.

The above figure shows virtually perfect consistency between the numerical and analytical methods.
Also in this type of deformation linear and quadratic elements wil produce the same result therefore
figure 6 represents the results for both types of elements. Note that it was checked internally that
deformation gradient was indeed constant across all elements.

14
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5.5 Flat Plate under Transverse Load
5.5.1 Linear Elements

To begin this section i will present deflection graphs with 1x grid resolution and 4x grid resolution.
This will give a good sense of how linear elements behave under applied load and how to appro-
priately use them in more complicated meshes. I will then show how the maximum deformation
converges as mes resolution goes up.

1X Mesh

Defarmation at One Half Maximum Load

zim}
]
=
iu
1
"
‘e
i
.
1
tak

(a)

Deformation at Maximum Load

(b)

Deformation at Maximurm Load

0.06

005 "gos 0.04 0.02 0 0.02

(c)

Figure 7: This figure shows (a) and (b) the deformation plot as seen from on the yz plane. (c) is a insometric
view to give a better sense of the problem. Reference mesh is in blue, deformed is in red.

15
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4X Mesh
Defarmation at One Half Maximurm Load

O - - el

E SO e L

_DD2 l L L l L Il
-0.06 -0.04 -0.02 0 0.0z 0.04 0.06

¥(rm)
(a)

Defarmation at Maximum Load

0l : a ; : : a

-0.08 0.04 002 0 0.02 0.04 0.05
yrm)
(b)

Deformation at Maximum Load

-0.06 -0.04 -0.02 o ooz 0.04 0.068

Figure 8: This figure shows (a) and (b) the deformation plot as seen from on the yz plane. (c) is an isometric
view to give a better sense of the problem. Reference mesh is in blue, deformed is in red.

16
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Convergence

Transverse Load vs Max Displacement
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0.014
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0.012

0.01

0.008 H

0.006

0.004

0.002
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0.018
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2 Elements
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Force (M m2)

(a)

Convergence History

5 10 15 20 25 30 35 40 45 50
Elerments

(b)

Figure 9: (a) shows the displacement as a function of transverse load for several mesh refinements, while (b)
just shows the mazimum deformation as a function of elements used. This figure shows that as we increase
the number of elements that make up our flat plate we are approaching a single value for the deformation
when 103N /m? are applied. This number is approzimately 0.0173 m

17
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5.5.2 Quadratic Elements

To begin this section i will present deflection graphs with 1x grid resolution and 4x grid resolution.
This will give a good sense of how quadratic elements behave under applied load and how and when
to use them. I will then show how the maximum deformation converges as mes resolution goes up.

1X Mesh
Deformation at One Half Maximum Load
Qpeeeee & H R H : &
¥ s : T
. Pa,, : : AL
é ] [ EEERTEEERPPPPPIRTERR SOPPPPPRRET 4 P;' .................... 1.;.1 ......................................
i | M _ |
ool ; ; ; ; ; i
-0.06 -0.04 -0.02 0 0.02 0.04 0.0&
¥(m)
(a)
Deformation at Maximurm Load
Opee - K . K : a T
e, | | u’
— oy a s
IS s T S '.a', ...................... 1“;‘ .......................
I3 : h !
RALEEH FEELAMY
_DD2 l L l L Il
-0.06 0.04 -0.02 0 0.0z 0.04 0.06
¥(rm)
(b)
Defarmation at Maximum Load
0
E -0.01
[ :
0,02
0.0s L
x{mi ylm)
(c)

Figure 10: This figure shows (a) and (b) the deformation plot as seen from on the yz plane. (c) is a insometric
view to give a better sense of the problem. Reference mesh is in blue, deformed is in red.

18
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4X Mesh

Defarmation at One Half Maximum Load

(a)

Defarmation at Maximum Load

o2t | I 1 1 |
-0.08 -0.04 -0.02 a 0.0z 0.04 0.06

(b)

Defarmation at Maximum Load

-0.06 -0.04 -0.02 o 0.0z 0.04 0.06

(c)

Figure 11: This figure shows (a) and (b) the deformation plot as seen from on the yz plane. (c) is a insometric
view to give a better sense of the problem. Reference mesh is in blue, deformed is in red.

19
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Convergence

Transverse Load vs Max Displacement
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Figure 12: (a) shows the displacement as a function of transverse load for several mesh refinements, while (b)
just shows the mazimum deformation as a function of elements used. This figure shows that as we increase
the number of elements that make up our flat plate we are approaching a single value for the deformation
when 103N/m? are applied. This number is approzimately 0.0171 m

20
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5.5.3 Flat Plate under Transverse Load: Review

Notice that while the refined meshes for both linear and quadratic elements converge to similar
values, the are not the same. This is because of the nature of the two elements. Linear elements
are stiff and will always have corners. Quadratic elements are softer and can round out creating a
smoother deflection profile. Looking explicitly at the 1x grid, linear and quadratic elements give
very different deformed shapes. However as resolution goes up the two plots eventually become
indistinguishable. That being said, because the nature of a plate under transverse load will result
in curvature, quadratic elements should be used. Additionally, since quadratic elements are better
suited for this application they should be considered more accurate. Therefore the maximum
deflection of this particular geometry under the specifies loads was 1.71cm which is very reasonable
given the scale of the problem.

21
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5.6 Spherical Shell with Internal Pressure

In this section several combinations of mesh resolution and force applied will be presented and
discussed.

1X Quadratic Mesh 5000Pa

Deformation at One Half Maximum Load

0.1

0.08

0.06
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0.02

-0.02
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-0.08

-0.08

01 -0.058 0 0.05 0.1

(a)

Defarmation at Maximum Load
0.1

0.08
0.06
0.04

0.0z

D0ZF ot ............................................... .............. (L

Y e N S ot

01 -0.058 0 0.05 0.1

(b)
Figure 13: This figure shows a 1z quadratic mesh for the balloon under 2500Pa (a) and 5000Pa (b)
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Stretch Ratio vs Internal Pressure

Internal Fressure vs Streteh Ratio
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Figure 14: This figure shows the relationship between stretch length and applied pressure

Things to note about this configuration of simulation parameters: The mesh resolution of
this configuration is way too low. It spends the whole simulation trying to round itself out,
but since each element can only bend so much, it never truly becomes spherical. The one
nice thing this graph shows is that because our initial mesh is a diamond, where the middle
nodes are not actually on the true radius of the sphere, the max radius actually shrinks when
a force is applied. This is a consequence of quadratic elements, because as the elements try to
make themselves more round, they 'pull’ in the sharp corners that were present in the initial
mesh. Although it only decreases to 0.993 of the initial radius before starting to grow again,
this tells us why the stretch ration for the 2x mesh had the ’s’ shape.
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Figure 15: This figure shows a 2x quadratic mesh for the balloon under 500Pa (a) and 1000Pa (b)
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Stretch Ratio vs Internal Pressure

Internal Pressure va Stretch Ratio
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Figure 16: This figure shows the relationship between stretch length and applied pressure

Things to note about this configuration of simulation parameters: Note that because of the
flexible nature of quadratic elements, even though the initial mesh is initialized to look like
the linear mesh, only with extra nodes, after a few runs the middle nodes get expanded out
and and it looks like a smooth sphere. The most interesting trend here is in the pressure vs
stretch ratio graph where we observe almost an ’s’ shape. Stretch ratio increases very fast
initially, then slows and finally reaches a stable increase rate. This may be due to the fact
that the mesh takes some time to stabilize the middle nodes that start off of the true radius
of the element.
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Figure 17: This figure shows a 1z quadratic mesh for the balloon under 1000Pa (a) and 5000Pa (b)
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Stretch Ratio vs Internal Pressure

Stretch Ratio vs Internal Pressure
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Figure 18: This figure shows the relationship between stretch length and applied pressure

Things to note about this configuration of simulation parameters: This is the first case where
you can really see significant deformation in the deformation plot. The elements are a good

size and this is the mesh I will use in a long scale run to see how it compares to the exact
solution.
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1X Linear Mesh 5000Pa
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Figure 19: This figure shows a 1z linear mesh for the balloon under 2500Pa (a) and 5000Pa (b)
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Stretch Ratio vs Internal Pressure

Internal Pressure vs Stretch Ratio
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Figure 20: This figure shows the relationship between stretch length and applied pressure

Things to note about this configuration of simulation parameters: Linear elements are very
stiff. This particular mesh is very rough in size and the initial mesh is more of a diamond
than anything. However because linear elements are stiff, it stays a diamond for all time, the
only thing each element can do is scale. Therefore, while oyu do get stretch, it will not be as
accurate as the quadratic case. Looking at the stretch ratio graph we see a different trend
than the quadratic case. This is again because of the stiffness of the elements. The next plot
will show a mesh refinement to see the effect that has for linear elements.
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4X Linear Mesh 1000Pa
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Figure 21: This figure shows a 4z linear mesh for the balloon under 500Pa (a) and 1000Pa (b)
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Stretch Ratio vs Internal Pressure

Internal Pressure va Stretch Ratio
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Figure 22: This figure shows the relationship between stretch length and applied pressure

Things to note about this configuration of simulation parameters: Linear elements are very
stiff. Although this mesh is much more refined than the 1x it still has sharp corners. This is
inevitable with linear elements. However, even with just stiff triangles, we observer a shape
that looks essentially spherical. A fine enough mesh should approach the exact solution.
Looking at stretch ratio, this configuration of parameter looks slightly different than the
simple mesh, It almost looks like it is flattening out. This simulation needs to be run for
longer to see what the long term trend would be.
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Max Pressure

Intemal Pressure vs Stretch Ratio
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Figure 23: Mazx pressure for a Linear element on 2x mesh. This figure shows the relationship between stretch

length and applied pressure, up to the point that the Newton solver could no longer converge. This occurred
at P = 7270Pa

Intemal Pressure vs Stretch Ratio
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Figure 24: Max pressure for a quadratic element on 2x mesh. This figure shows the relationship between
stretch length and applied pressure, up to the point that the Newton solver could no longer converge. This
also occurred at P = 7270Pa
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Comparison to Exact

Inflation pressure vs. prescribed stretch.
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Figure 3: Computed inflation pressure as a function of civeumferential stretch for
different material models, compared to the analytical expression for Ogden material.

(a) This figure shows the exact solution as presented by [2]
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(b) This figure shows the numerical solution computed with 3z quadratic mesh.

Figure 25: Ezract vs Numerical Internal Pressure. While my solution has not had a chance to run fully, the
part that has run looks like it is of similar functional form as the exact neoHookean model as provided by

ComSol 2012. Given more time i would like to fully run my algorithm on the 3r quadratic mesh and see if
it eventually levels off.
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5.6.1 Spherical Shell with Internal Pressure: Review

Overall we see very different behavior when using linear vs quadratic elements. Spherical shell is
very round and only quadratic elements can truly capture this roundness, so they should give better
accuracy in this case. However, despite their differences, they both determined the same value for
max pressure when the Newton-Rhapson iterations would no longer converge. This value was
found to be 7270Pa. The stretch ratios at this point was slightly different , however the consistency
in max force adds validity to my method. While there are many possible choices of meshes and
elements, using a 3x quadratic mesh looks like it models the exact solution fairly well as shown by
the previous figure.

6 Conclusion

As seen by the results, membranes are a very practical and accurate way to analyze real systems
in a simple manner. While the nonlinear finite element solver developed in this paper is relatively
slow due to numerous nested for loops and while loops, it is still a consistent and accurate method.
Given more time i would strive to improve the speed of this algorithm and add in dynamic and
viscous terms. As it is however, the FEM i developed over the past few weeks is a valuable asset
in analyzing simple geometries.
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7 Source Code Listing

hw3main.m The main routine where everything else is called. This homework was broken down
into several large functions. Due to time issues the spherical balloon under pressure was
implemented here too.

assemble.m This takes a given reference and deformed mesh and computes the stiffness and forces
for each element then puts them together in big global arrays.

clipper.m This function takes a stiffness matrix and resultant and cuts out the degrees of freedom
that are not being looked at

consistency.m This function tests the consistency of either a single element or a whole mesh.
Decides based on if it is passed a connectivity list.

enforcePS.m This function performs the newton iteration to drive Tau 33 to zero. It returns the
transformed quantities from the neoHookean routine

gen_deform.m This was a helper function to help test things. It just creates certain types of
deformation i ask it to.

get_duals.m This function takes in the given tangent vectors and returns the duals by using the
inverse metric.

get_tans.m This function takes in the reference and deformed configurations and returns the
tangent basis vectors

linTri_Na.m This is the linear shape function.
quadTri_Na.m This is the quadratic shape function.

neoHookean.m This is the fundamental hyperelastic model and the base of the code. It calculates
P, CiJkL and w. It returns T CIJKL and w. It computes F internally from tangent basis.

neoHookeanOLD.m This was needed to compare the results for the equibiaxial problem. This
would return the analytical values of P based on a specified H.

plate_iso_def.m This function will take in how much you want to stretch a plate and try to do it
without incremental loading. Pretty limited use.

plate_iso_def.m This function however does incremental loading and can handle much larger
deformations.

plate_mesh.m This function takes in a L. W and mesh parameters and returns the mesh for a 1/4
plate. I use symmetry in all solvers so only need 1/4 mesh.

plot_tans.m Makes a nice visual to see that my tangent vectors and shape functions are working
correctly.

PSNeoHookean.m This was also used to calculate analytical P during equibiaxial.

quad_mesh.m My original meshing function only do three pointed triangles. if i want to used
quadratic elements i need 6 nodes therefore i add on on the midpoints and add the new
connectivity to the original connectivity list as we as adding the new nodes to the nodes list.
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quad_midpoints.m helper function for gen_deform.m needed because quadratic elements have
more nodes than linear ones.

quatra_rule.m This function returns the quadrature rules we are using. Essentially a look up
table

sphere_mesh.m one of my prides and joy from this assignment. Generate the mesh for any sphere
with a specified mesh size.

TL_plate.m This one is the sub routine that handles transverse loading. Does incremental force.

transform_from_para.m This takes parametric coordinates and configurations and tells you
where in Cartesian space that is.

unwrap_K.m This function simply makes K square by reshaping it.

WI{K.m Another big work horse. Calculates the elemental f K and w.
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