Supersonic Jet Inlet Using MacCormacks Method

David Vasko

MAE Department University of California, Los Angeles

March 18, 2015

Outline

- Introduction
 - Motivation
 - Problem Statement
- Numerical Methods
 - Cell Geometry
 - Exact Solution
 - MacCormacks Method
- Convergence History
- Results
 - Optimal Dissipation
 - Zero Dissipation vs Optimal Dissipation
 - Exact vs Numerical
- Time Complexity
- Summary

Motivation

- Jet engines cannot function in supersonic flows
 - Need carefully designed inlets to reduce air speed
 - Done through oblique shocks

Figure: Example Inlet Design [1]

A fast accurate numerical solver is desired

Problem Statement

Simplify geometry

Figure: Simplified and Discretized Geometry

- Solve for the oblique shocks
- Design for specific flow parameters

4/19

David Vasko (UCLA) March 18, 2015

Cell Geometry

- Need geometric properties for each cell
 - Volume (Area in 2D)
 - Surface Areas (Edge Lengths in 2D)
 - Normals
- Schematic

David Vasko (UCLA)

Exact Solution

Normal Shock Relations

$$M_2^2 = \frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}$$

• θ, β, M relation

$$\tan(\theta) = 2\cot(\beta) \frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cot(2\beta)) + 2}$$

Newton-Rhapson

$$\beta_{n+1} = \beta_n - \frac{f(\beta_n)}{f'(\beta_n)}$$

MacCormacks Method

- Two step scheme
 - Predictor

$$U_{ij}^{\overline{n+1}} = U_{ij}^{n} - \frac{\Delta t}{A_{ij}} \left(\frac{\partial \dot{E}_{i+\frac{1}{2},j}^{*}}{\partial \xi} |L_{i+\frac{1}{2},j}| + \frac{\partial \dot{F}_{i,j+\frac{1}{2}}^{*}}{\partial \eta} |L_{i,j+\frac{1}{2}}| \right)$$

Corrector

$$U_{ij}^{n+1} = \frac{1}{2} \left[U_{ij}^{n} + U_{ij}^{\overline{n+1}} - \frac{\Delta t}{A_{ij}} \left(\frac{\partial \dot{E}_{i-\frac{1}{2},j}^{**}}{\partial \xi} |L_{i\pm\frac{1}{2},j}| + \frac{\partial \dot{F}_{i,j-\frac{1}{2}}^{**}}{\partial \eta} |L_{i,j\pm\frac{1}{2}}| \right) \right]$$

7/19

Adding Dissipation

Artificial Dissipation Terms (Subscript i is dropped for simplicity)

$$D_i = \epsilon (\vec{u}_i n_{4x} + \vec{v}_i n_{4y} + c_i) \frac{|P_i - 2P_{i-1} + P_{i-2}|}{P_i + 2P_{i-1} + P_{i-2}}$$

Experimentally find optimal dissipation

Convergence History

Figure: Convergence History for 4x Grid

Optimal Dissipation

Figure: Optimal Dissipation Curve. Optimum at $\epsilon = 0.85$

David Vasko (UCLA) March 18, 2015 10 / 19

Zero Dissipation vs Optimal Dissipation

Zero Dissipation vs Optimal Dissipation

12/19

Exact vs Numerical

Exact vs Numerical

Time Complexity

- Speed is important
- Sometimes a little accuracy is sacrifices for gains in speed
- Time complexities of algorithms are very important

Time Complexity

Time Complexity

Summary

- MacCormack Method with Artificial Dissipation has great accuracy with regards to the exact solution on all grids. As little as 1 percent average error per node.
- My implementation is fast and is an improvement of about 2 orders of magnitude in terms of runtime over the baseline
- Good numerical methods are needed to iterate and optimize designs
- Outlook
 - · Apply to more general geometries
 - Make a good User Interface

References

[1] "Bypass Air Systems." 456FIS. Web. Updated Feb. 10, 2014."http://www.456fis.org/YF-12A_SR-71_ENGINE.html". Accessed Mar. 15, 2015

