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Motivation

Jet engines cannot function in supersonic flows
Need carefully designed inlets to reduce air speed
Done through oblique shocks

Figure: Example Inlet Design [1]

A fast accurate numerical solver is desired
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Problem Statement

Simplify geometry

Figure: Simplified and Discretized Geometry

Solve for the oblique shocks
Design for specific flow parameters
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Cell Geometry

Need geometric properties for each cell
Volume (Area in 2D)
Surface Areas (Edge Lengths in 2D)
Normals

Schematic
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Exact Solution

Normal Shock Relations

M2
2 =

(γ − 1)M1
2 + 2

2γM1
2 − (γ − 1)

θ, β,M relation

tan(θ) = 2 cot(β)
M1

2 sin2 β − 1
M1

2(γ + cot(2β)) + 2

Newton-Rhapson

βn+1 = βn −
f (βn)

f ′(βn)
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MacCormacks Method

Two step scheme
Predictor

Uij
n+1 = Uij

n − ∆t
Aij

(
∂Ė∗
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Adding Dissipation

Artificial Dissipation Terms (Subscript j is dropped for simplicity)

Di = ε(~uin4x + ~vin4y + ci)
|Pi − 2Pi−1 + Pi−2|
Pi + 2Pi−1 + Pi−2

Experimentally find optimal dissipation
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Convergence History

Figure: Convergence History for 4x Grid
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Optimal Dissipation

Figure: Optimal Dissipation Curve. Optimum at ε = 0.85
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Zero Dissipation vs Optimal Dissipation

Figure: Zero Dissipation: 1x gridDavid Vasko (UCLA) March 18, 2015 11 / 19



Zero Dissipation vs Optimal Dissipation

Figure: Optimal Dissipation: 1x gridDavid Vasko (UCLA) March 18, 2015 12 / 19



Exact vs Numerical

Figure: Exact Solution: 4x gridDavid Vasko (UCLA) March 18, 2015 13 / 19



Exact vs Numerical

Figure: MacCormacks method with artificial dissipation: 4x gridDavid Vasko (UCLA) March 18, 2015 14 / 19



Time Complexity

Speed is important
Sometimes a little accuracy is sacrifices for gains in speed
Time complexities of algorithms are very important
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Time Complexity

Figure: Runtime as a function of time stepsDavid Vasko (UCLA) March 18, 2015 16 / 19



Time Complexity

Figure: Runtime as a function of grid scaleDavid Vasko (UCLA) March 18, 2015 17 / 19



Summary

MacCormack Method with Artificial Dissipation has great accuracy
with regards to the exact solution on all grids. As little as 1 percent
average error per node.
My implementation is fast and is an improvement of about 2
orders of magnitude in terms of runtime over the baseline
Good numerical methods are needed to iterate and optimize
designs

Outlook
Apply to more general geometries
Make a good User Interface

David Vasko (UCLA) March 18, 2015 18 / 19



References

[ 1 ] “Bypass Air Systems.” 456FIS. Web. Updated Feb. 10, 2014.
“http://www.456fis.org/YF-12A_SR-71_ENGINE.html”. Accessed
Mar. 15, 2015

David Vasko (UCLA) March 18, 2015 19 / 19


	Introduction
	Motivation
	Problem Statement

	Numerical Methods
	Cell Geometry
	Exact Solution
	MacCormacks Method

	Convergence History
	Results
	Optimal Dissipation
	Zero Dissipation vs Optimal Dissipation
	Exact vs Numerical

	Time Complexity
	Summary

